On the Lightweight Design Choices for Diffusion Layer of Block Ciphers

SUMANTA SARKAR

TCS Innovation Labs

December 11, 2017

SUMANTA SARKAR Lightweight Cryptography

프 🖌 🔺 프 🕨

ж

- Internet of things (IoT): Network of smart devices.
- Examples: cyberphysical systems: health monitoring, environmental monitoring, supply chain Smart cities: citizens, traffic systems, social system, waste management, etc all connected for better usage of resources.
- Connected car: core to driverless cars. (California clears the way for testing of fully driverless cars)

医下 不医下

• Jeep Cherokee Hacked in July 2015. Sitting 10 miles away hackers took the control from the driver.

★ 문 ► ★ 문 ►

< 🗇 🕨

ъ.

• Jeep Cherokee Hacked in July 2015. Sitting 10 miles away hackers took the control from the driver.

picture source: amazon.in

< 注) < 注) < 注)

э.

• Jeep Cherokee Hacked in July 2015. Sitting 10 miles away hackers took the control from the driver.

picture source: amazon.in

- Alexa accidentally ordered dollhouse for many houses (January 2017).
- Phillips Hue smart bulbs were shown to be hackable.

∢ 国 ▶

- IoT network is comprised of RFID/Sensors.
- AES or RSA: popular choices of encryption in practice.

프 🖌 🔺 프 🕨

э.

- IoT network is comprised of RFID/Sensors.
- AES or RSA: popular choices of encryption in practice.
- For secure communication in IoT, we cannot employ AES, we need "lightweight" encryption/decryption algorithm.

医下 不医下

- IoT network is comprised of RFID/Sensors.
- AES or RSA: popular choices of encryption in practice.
- For secure communication in IoT, we cannot employ AES, we need "lightweight" encryption/decryption algorithm.
- NIST is in the process of lightweight standardisation.

프 🖌 🛪 프 🛌

- Lightweight cryptography mostly based on symmetric key.
- Lightweight stream ciphers: eSTREAM finalists Grain v1, MICKEY 2.0, and Trivium, etc.
- Lightweight block ciphers: CLEFIA, PRESENT: Standardized by ISO/IEC 29192, etc.

▲ Ξ ▶ ▲ Ξ ▶ Ξ • 𝒴 𝒫 𝔅 𝔅

- Lightweight cryptosystem: How to measure the "weight"?
- (Silicon) Area , Performance and power consumption

프 🖌 🔺 프 🕨

- Lightweight cryptosystem: How to measure the "weight"?
- (Silicon) Area, Performance and power consumption Area measured by number of Gate Equivalent (GE) Block cipher LED 64 bit => GE = 966 (.18 μm).
- Performance: Throughput.
- Consult Cryptolux/Lightweight_Cryptography for the list of lightweight ciphers.

• A block cipher has two building blocks:

프 🖌 🔺 프 🕨

æ.

- A block cipher has two building blocks: Confusion & Diffusion
- Confusion layer makes the relation between key and ciphertext as complex as possible.
- Diffusion spreads the plaintext statistics throughout the ciphertext.

医下 不医下

э.

- $F: \mathbb{F}_q^n \to \mathbb{F}_q^n$: Differential Branch Number of $F: \min\{wt(x+y) + wt(F(x) + F(y))\}.$
- Differential Branch Number of $F \leq n+1$

프 🖌 🔺 프 🕨

- Diffusion layer: multiplication of a vector with a matrix (over $GF(2^n)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power n+1.
 MDS matrix: square matrix whose every submatrix is nonsingular.

프 🖌 🔺 프 🕨

ъ

- Diffusion layer: multiplication of a vector with a matrix (over $GF(2^n)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power n+1.
 MDS matrix: square matrix whose every submatrix is nonsingular.
- In practice, product of two field elements is implemented simply by some XORs.
- [Khoo et al. CHES 2014] looked at the number of XORs required to multiply a fixed field element by an arbitrary field element and termed it as

XOR Count

A = A = A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 β ∈ GF(2ⁿ) is implemented by the corresponding vector (β₀,..., β_{n-1}) ∈ GF(2)ⁿ by choosing some basis of GF(2ⁿ).

(문) (문) (문)

- β ∈ GF(2ⁿ) is implemented by the corresponding vector (β₀,..., β_{n-1}) ∈ GF(2)ⁿ by choosing some basis of GF(2ⁿ).
- Consider $GF(2^3)$ under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?

프) (프) 프

XOR count

- β ∈ GF(2ⁿ) is implemented by the corresponding vector (β₀,..., β_{n-1}) ∈ GF(2)ⁿ by choosing some basis of GF(2ⁿ).
- Consider $GF(2^3)$ under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?

•
$$\alpha^4 = \alpha + \alpha^2 \rightarrow (0, 1, 1)$$

• Take a general element $b_0 + b_1 \alpha + b_2 \alpha^2 \in \operatorname{GF}(2^3) \to (b_0, b_1, b_2).$

프 🖌 🔺 프 🕨

XOR count

- β ∈ GF(2ⁿ) is implemented by the corresponding vector (β₀,..., β_{n-1}) ∈ GF(2)ⁿ by choosing some basis of GF(2ⁿ).
- Consider $GF(2^3)$ under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?
- $\alpha^4 = \alpha + \alpha^2 \rightarrow (0, 1, 1)$
- Take a general element $b_0 + b_1 \alpha + b_2 \alpha^2 \in \mathrm{GF}(2^3) \to (b_0, b_1, b_2).$ Implement

 $(b_0, b_1, b_2)(0, 1, 1)$

A = A = A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- β ∈ GF(2ⁿ) is implemented by the corresponding vector (β₀,..., β_{n-1}) ∈ GF(2)ⁿ by choosing some basis of GF(2ⁿ).
- Consider $GF(2^3)$ under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?

•
$$\alpha^4 = \alpha + \alpha^2 \rightarrow (0, 1, 1)$$

• Take a general element $b_0 + b_1 \alpha + b_2 \alpha^2 \in \mathrm{GF}(2^3) \to (b_0, b_1, b_2).$ Implement

$$(b_0, b_1, b_2)(0, 1, 1)$$

 $(b_0 + b_1 \alpha + b_2 \alpha^2) \alpha^4 = (b_1 + b_2) + (b_0 + b_1) \alpha + (b_0 + b_1 + b_2) \alpha^2.$

• In vector form this product is of the form $(b_1 \oplus b_2, b_0 \oplus b_1, b_0 \oplus b_1 \oplus b_2)$

- β ∈ GF(2ⁿ) is implemented by the corresponding vector (β₀,..., β_{n-1}) ∈ GF(2)ⁿ by choosing some basis of GF(2ⁿ).
- Consider $GF(2^3)$ under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?

•
$$\alpha^4 = \alpha + \alpha^2 \rightarrow (0, 1, 1)$$

• Take a general element $b_0 + b_1 \alpha + b_2 \alpha^2 \in \mathrm{GF}(2^3) \to (b_0, b_1, b_2).$ Implement

$$(b_0, b_1, b_2)(0, 1, 1)$$

 $(b_0 + b_1 \alpha + b_2 \alpha^2) \alpha^4 = (b_1 + b_2) + (b_0 + b_1) \alpha + (b_0 + b_1 + b_2) \alpha^2.$

In vector form this product is of the form (b₁ ⊕ b₂, b₀ ⊕ b₁, b₀ ⊕ b₁ ⊕ b₂)
XOR(α⁴) = 4.

▲ 国 ▶ → 国 ▶ → 国

- Challenge in lightweight block ciphers: Construct diffusion matrices with low XOR counts.
- Others (Kranz et al 17, JPS17]) considered re-usage of terms to decrease the number of XORs. But this costs delay and/or additional memory.

医下 不医下

- α is a root of irreducible polynomial $X^n + q(X) + 1$, if there are t nonzero terms, then $XOR(\alpha)1$.
- For example, α is a root of X⁴ + X + 1 that defines GF(2⁴), then XOR(α) = 1. But if we change the irreducible polynomial to X⁴ + X³ + X² + X + 1 then none of the elements of GF(2⁴) has XOR count 1.

-∢ ⊒ ▶

XOR count distribution also varies when a different basis of $GF(2^n)$ is considered, even if the underlying irreducible polynomial remains fixed.

∢ 国 ▶

ъ

XOR count distribution also varies when a different basis of $GF(2^n)$ is considered, even if the underlying irreducible polynomial remains fixed.

Elements	0	1	α	α^2	α^3	α^4	α^5	α^6	Sum
Basis $\{1, \alpha, \alpha^2\}$	0	0	1	2	4	4	3	1	15
Basis $\{\alpha^3, \alpha^6, \alpha^5\}$	0	0	3	3	2	3	2	2	15

XOR count distribution of $GF(2^3)$ under $X^3 + X + 1$

Definition

A matrix is called circulant if every row is a cyclic shift of other rows.

$$\mathrm{T} = egin{bmatrix} a_0 & a_1 & a_2 & a_3 \ a_3 & a_0 & a_1 & a_2 \ a_2 & a_3 & a_0 & a_1 \ a_1 & a_2 & a_3 & a_0 \end{bmatrix}$$

٠

E ► < E ►

æ.

Definition

A matrix is called Toeplitz if every descending diagonal from left to right is constant.

A typical 4×4 Toeplitz matrix looks like

$$\mathrm{T} = egin{bmatrix} a_0 & a_1 & a_2 & a_3 \ a_{-1} & a_0 & a_1 & a_2 \ a_{-2} & a_{-1} & a_0 & a_1 \ a_{-3} & a_{-2} & a_{-1} & a_0 \end{bmatrix}.$$

Definition

A matrix M is called involutory if M * M = Identity matrix.

★ Ξ ► < Ξ ►</p>

ъ

Let $T_1(x)$ be the following 4×4 Toeplitz matrix defined over \mathbb{F}_{2^m} :

$$\mathrm{T}_1(x) = egin{bmatrix} x & 1 & 1 & x^{-2} \ 1 & x & 1 & 1 \ x^{-2} & 1 & x & 1 \ x^{-2} & x^{-2} & 1 & x \end{bmatrix} .$$

If $x \in \mathbb{F}_{2^m}^*$ is such that the degree of its minimal polynomial over \mathbb{F}_2 is ≥ 5 , then $T_1(x)$ is MDS.

医下 不医下

Let $T_2(x)$ be the following 4×4 Toeplitz matrix defined over \mathbb{F}_{2^m} :

$$\Gamma_2(x) = egin{bmatrix} 1 & 1 & x & x^{-1} \ x^{-2} & 1 & 1 & x \ 1 & x^{-2} & 1 & 1 \ x^{-1} & 1 & x^{-2} & 1 \end{bmatrix}.$$

프 🖌 🔺 프 🕨

If $x \in \mathbb{F}_{2^m}^*$ is such that

• the degree of the minimal polynomial of x is ≥ 4 , and

• x is not a root of the polynomial $X^6 + X^5 + X^4 + X + 1$, then $T_2(x)$ is MDS. For $GF(2^8)$, the family $T_2(x)$ of MDS matrixes contains matrix with XOR count 30.

For $GF(2^8)$, the family $T_2(x)$ of MDS matrixes contains matrix with XOR count 27. Earlier best known matrix was 32.

For $GF(2^4)$, the family $T_2(x)$ of MDS matrixes contains matrix with XOR count 10. Earlier best known matrix was 12.

프 > - * 프 >

Search result:

For $GF(2^8)$, the lowest XOR count of a 4×4 MDS matrix is 27.

For $GF(2^4)$, the lowest XOR count of a 4×4 MDS matrix is 10.

프 > - * 프 >

Let T be an $n \times n$ Toeplitz matrix defined over $GF(2^m)$. Then T cannot be both MDS and involutory.

프 🖌 🔺 프 🕨

э.

Suppose $N_1(x)$ is a 4×4 matrix over \mathbb{F}_{2^m} such that

$$N_1(x) = egin{bmatrix} 1 & x & 1 & x^2+1 \ x & 1 & x^2+1 & 1 \ x^{-2} & 1+x^{-2} & 1 & x \ 1+x^{-2} & x^{-2} & x & 1 \end{bmatrix}.$$

Then $N_1(x)$ is an involutory matrix for all nonzero $x \in \mathbb{F}_{2^m}$, and if the degree of the minimal polynomial of x over \mathbb{F}_2 is ≥ 4 , then $N_1(x)$ is also MDS.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Suppose $N_1(x)$ is a 4×4 matrix over \mathbb{F}_{2^m} such that

$$N_1(x) = egin{bmatrix} 1 & x & 1 & x^2+1 \ x & 1 & x^2+1 & 1 \ x^{-2} & 1+x^{-2} & 1 & x \ 1+x^{-2} & x^{-2} & x & 1 \end{bmatrix}.$$

Then $N_1(x)$ is an involutory matrix for all nonzero $x \in \mathbb{F}_{2^m}$, and if the degree of the minimal polynomial of x over \mathbb{F}_2 is ≥ 4 , then $N_1(x)$ is also MDS.

• For $GF(2^8)$, the minimum XOR count obtained in N_1 class is 64, this is matching with the known lowest bound (obtained through search).

Suppose $N_2(x)$ is a 4×4 matrix over \mathbb{F}_{2^m} such that

$$N_2(x) = egin{bmatrix} 1 & x^2+1 & x & 1 \ x^2+1 & 1 & 1 & x \ x^3+x & x^2+1 & 1 & x^2+1 \ x^2+1 & x^3+x & x^2+1 & 1 \end{bmatrix}.$$

Then $N_2(x)$ is an involutory matrix for all $x \in GF(2^m)$, and if the degree of the minimal polynomial of x over \mathbb{F}_2 is ≥ 4 , then $N_2(x)$ is also MDS.

- For $GF(2^4)$, the minimum XOR count obtained for N_2 is 16.
- The best known was 24.

医下 不医下

Toeplitz MDS Matrices

• Toeplitz matrices have repeating submatrices [SS17].

٠

a_0	a_1	a_2	a_3
a_{-1}	<i>a</i> 0	a_1	a_2
a_{-2}	a_{-1}	a_0	a_1
a_3	a_{-2}	a_{-1}	a_0

The number of distinct $d \times d$ Toeplitz submatrices are

$$\delta_{d,n} = egin{cases} 2n-1 & ext{if} \ \ d=1 \ \\ (n-d+ au_{d,n}+1)\cdot \lfloor rac{n-1}{d-1}
floor & ext{if} \ \ d=2,\dots,n \end{cases}$$

where $\tau_{d,n}$ is given by $n-1 = \lfloor \frac{n-1}{d-1} \rfloor (d-1) + \tau_{d,n}$.

Dimension	# submatrix	# of submatrices of	# of Toeplitz submatrices
	in general	# of Toeplitz matrix	# of Toeplitz Matrix
4×4	69	50	20
5×5	251	182	35
6 × 6	923	672	55
7 imes 7	3431	2508	81
8 × 8	12869	9438	113

医下 不医下

æ.

- Prob [an $n \times n$ matrix over \mathbb{F}_q is nonsingular] = $\prod_{i=1}^n \left(1 \frac{1}{q^i}\right)$.
- Prob [an $n \times n$ TOEPLITZ matrix over \mathbb{F}_q is nonsingular] = 1 1/q.
- What is the probability that a Toeplitz matrix is MDS?

医下 不医下

- The lowest XOR count $GF(2^8)$ is 232.
- The lowest XOR count for $GF(2^4)$ is 170.

글 > 글

• A serial matrix of order $n \times n$ over \mathbb{F}_{2^m} is a matrix of the form

 $S = egin{bmatrix} 0 & 1 & \dots & 0 \ 0 & 0 & \dots & 0 \ dots & dots & \dots & dots \ 0 & 0 & \dots & 1 \ a_0 & a_1 & \dots & a_{n-1} \end{bmatrix}$

 A Recursive MDS matrix is a MDS matrix of the form M = Sⁱ for some i ≥ 1.. Least Sⁿ = MDS.

٩

$$egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ c_0 & c_1 & c_2 \end{bmatrix} egin{bmatrix} x \ y \ z \end{bmatrix} = [y,z,c_0x+c_1y+c_2z]$$

- Serial matrix is not MDS
- Repeat until we get MDS.

< ≣ →

• LED:

$$S = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \alpha^{2} & 1 & 1 & \alpha \end{bmatrix}$$

$$S^{4} = \text{MDS. } XOR(S) = 16.$$

- Last row (1,1,1,1) or (a,1,1,1) or (1,a,1,1) or (1,1,1,a) then $S^i \neq \mathrm{MDS}$ for $i \leq 8$
- But for the last row of (1, 1, a, 1), then it is possible to have $S^8 = MDS$.
- $S = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & \alpha & 1 \end{bmatrix}$
 - S is the lightest possible serial matrix with XOR(S) = 13 and S⁸ MDS, α is root of the irreducible polynomial X⁴ + X + 1

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Nonlinear function cannot achieve the highest branch number n+1.
- Binary function $\mathbb{F}_2^n \to \mathbb{F}_2^n$ differential branch number of $F = \min\{HW(x \oplus y) + HW(F(x) \oplus F(y))\}$
- highest branch number < n + 1.
- Differential branch number of PRESENT S-box = 3.
- Highest diff branch number of 4×4 S-boxes = 3.
- If it 4 then it is affine. [eprint 2017/990]

Bounds : Differential Branch Number of Nonlinear Permutations

• Linear permutations : Griesmer Bound (1960)

$$N \geq \sum_{i=0}^{K-1} \left\lceil d/2^i
ight
ceil.$$

• Our bound : [2n/3]. [eprint 2017/990]

n	Griesmer Bound	Our Bound
4	4	4
5	4	4
6	4	4
7	5	5
8	6	6
9	6	6
10	7	7
11	8	8
12	8	8
13	8	9

▲日と▲圖と★回と★回と 回一 ののの

THANK YOU

SUMANTA SARKAR Lightweight Cryptography

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで