On the Lightweight Design Choices for Diffusion Layer of Block Ciphers

SUMANTA SARKAR

TCS Innovation Labs

December 11, 2017

Internet of Things / Connected Cars

- Internet of things (IoT): Network of smart devices.
- Examples: cyberphysical systems: health monitoring, environmental monitoring, supply chain Smart cities: citizens, traffic systems, social system, waste management, etc all connected for better usage of resources.
- Connected car: core to driverless cars. (California clears the way for testing of fully driverless cars)

Threats!

- Jeep Cherokee Hacked in July 2015. Sitting 10 miles away hackers took the control from the driver.

Threats!

- Jeep Cherokee Hacked in July 2015. Sitting 10 miles away hackers took the control from the driver.
picture source: amazon.in
- Jeep Cherokee Hacked in July 2015. Sitting 10 miles away hackers took the control from the driver.

picture source: amazon.in
- Alexa accidentally ordered dollhouse for many houses (January 2017).
- Phillips Hue smart bulbs were shown to be hackable.

Why Lightweight Cryptography?

- IoT network is comprised of RFID/Sensors.
- AES or RSA: popular choices of encryption in practice.

Why Lightweight Cryptography?

- IoT network is comprised of RFID/Sensors.
- AES or RSA: popular choices of encryption in practice.
- For secure communication in IoT, we cannot employ AES, we need "lightweight" encryption/decryption algorithm.

Why Lightweight Cryptography?

- IoT network is comprised of RFID/Sensors.
- AES or RSA: popular choices of encryption in practice.
- For secure communication in IoT, we cannot employ AES, we need "lightweight" encryption/decryption algorithm.
- NIST is in the process of lightweight standardisation.

Lightweight Cryptography: Examples

- Lightweight cryptography mostly based on symmetric key.
- Lightweight stream ciphers: eSTREAM finalists Grain v1, MICKEY 2.0, and Trivium, etc.
- Lightweight block ciphers: CLEFIA, PRESENT: Standardized by ISO/IEC 29192, etc.

Lightweight Cryptography: Metric

- Lightweight cryptosystem: How to measure the "weight"?
- (Silicon) Area, Performance and power consumption

Lightweight Cryptography: Metric

- Lightweight cryptosystem: How to measure the "weight"?
- (Silicon) Area, Performance and power consumption Area measured by number of Gate Equivalent (GE) Block cipher LED 64 bit $=>$ GE $=966$ (. $18 \mu m$).
- Performance: Throughput.
- Consult Cryptolux/Lightweight_Cryptography for the list of lightweight ciphers.

Block Ciphers: Design Principles

- A block cipher has two building blocks:

Block Ciphers: Design Principles

- A block cipher has two building blocks:

Confusion \& Diffusion

- Confusion layer makes the relation between key and ciphertext as complex as possible.
- Diffusion spreads the plaintext statistics throughout the ciphertext.

Metric for Diffusion Layer

- $F: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$: Differential Branch Number of F : $\min \{w t(x+y)+w t(F(x)+F(y))\}$.
- Differential Branch Number of $F \leq n+1$

Implementation Cost Diffusion Layer

- Diffusion layer: multiplication of a vector with a matrix (over $G F\left(2^{n}\right)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power $\mathrm{n}+1$.
MDS matrix: square matrix whose every submatrix is nonsingular.

Implementation Cost Diffusion Layer

- Diffusion layer: multiplication of a vector with a matrix (over $G F\left(2^{n}\right)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power $\mathrm{n}+1$. MDS matrix: square matrix whose every submatrix is nonsingular.
- In practice, product of two field elements is implemented simply by some XORs.
- [Khoo et al. CHES 2014] looked at the number of XORs required to multiply a fixed field element by an arbitrary field element and termed it as

XOR Count

XOR count

- $\beta \in \operatorname{GF}\left(2^{n}\right)$ is implemented by the corresponding vector $\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \operatorname{GF}(2)^{n}$ by choosing some basis of $\operatorname{GF}\left(2^{n}\right)$.

XOR count

- $\beta \in \operatorname{GF}\left(2^{n}\right)$ is implemented by the corresponding vector $\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \operatorname{GF}(2)^{n}$ by choosing some basis of $\operatorname{GF}\left(2^{n}\right)$.
- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?

XOR count

- $\beta \in \operatorname{GF}\left(2^{n}\right)$ is implemented by the corresponding vector $\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \operatorname{GF}(2)^{n}$ by choosing some basis of $\operatorname{GF}\left(2^{n}\right)$.
- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?
- $\alpha^{4}=\alpha+\alpha^{2} \rightarrow(0,1,1)$
- Take a general element $b_{0}+b_{1} \alpha+b_{2} \alpha^{2} \in \operatorname{GF}\left(2^{3}\right) \rightarrow\left(b_{0}, b_{1}, b_{2}\right)$.

XOR count

- $\beta \in \operatorname{GF}\left(2^{n}\right)$ is implemented by the corresponding vector $\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \operatorname{GF}(2)^{n}$ by choosing some basis of $\operatorname{GF}\left(2^{n}\right)$.
- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?
- $\alpha^{4}=\alpha+\alpha^{2} \rightarrow(0,1,1)$
- Take a general element $b_{0}+b_{1} \alpha+b_{2} \alpha^{2} \in \operatorname{GF}\left(2^{3}\right) \rightarrow\left(b_{0}, b_{1}, b_{2}\right)$. Implement

$$
\left(b_{0}, b_{1}, b_{2}\right)(0,1,1)
$$

XOR count

- $\beta \in \operatorname{GF}\left(2^{n}\right)$ is implemented by the corresponding vector $\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \operatorname{GF}(2)^{n}$ by choosing some basis of $\operatorname{GF}\left(2^{n}\right)$.
- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?
- $\alpha^{4}=\alpha+\alpha^{2} \rightarrow(0,1,1)$
- Take a general element $b_{0}+b_{1} \alpha+b_{2} \alpha^{2} \in \operatorname{GF}\left(2^{3}\right) \rightarrow\left(b_{0}, b_{1}, b_{2}\right)$. Implement

$$
\begin{gathered}
\left(b_{0}, b_{1}, b_{2}\right)(0,1,1) \\
\left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}\right) \alpha^{4}=\left(b_{1}+b_{2}\right)+\left(b_{0}+b_{1}\right) \alpha+\left(b_{0}+b_{1}+b_{2}\right) \alpha^{2}
\end{gathered}
$$

- In vector form this product is of the form $\left(b_{1} \oplus b_{2}, b_{0} \oplus b_{1}, b_{0} \oplus b_{1} \oplus b_{2}\right)$

XOR count

- $\beta \in \operatorname{GF}\left(2^{n}\right)$ is implemented by the corresponding vector $\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \operatorname{GF}(2)^{n}$ by choosing some basis of $\operatorname{GF}\left(2^{n}\right)$.
- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?
- $\alpha^{4}=\alpha+\alpha^{2} \rightarrow(0,1,1)$
- Take a general element $b_{0}+b_{1} \alpha+b_{2} \alpha^{2} \in \operatorname{GF}\left(2^{3}\right) \rightarrow\left(b_{0}, b_{1}, b_{2}\right)$. Implement

$$
\begin{gathered}
\left(b_{0}, b_{1}, b_{2}\right)(0,1,1) \\
\left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}\right) \alpha^{4}=\left(b_{1}+b_{2}\right)+\left(b_{0}+b_{1}\right) \alpha+\left(b_{0}+b_{1}+b_{2}\right) \alpha^{2}
\end{gathered}
$$

- In vector form this product is of the form $\left(b_{1} \oplus b_{2}, b_{0} \oplus b_{1}, b_{0} \oplus b_{1} \oplus b_{2}\right)$
- $X O R\left(\alpha^{4}\right)=4$.

XOR count of a matrix

- Challenge in lightweight block ciphers: Construct diffusion matrices with low XOR counts.
- Others (Kranz et al 17, JPS17]) considered re-usage of terms to decrease the number of XORs. But this costs delay and/or additional memory.

XOR Count of some Specific Elements

- α is a root of irreducible polynomial $X^{n}+q(X)+1$, if there are t nonzero terms, then $X O R(\alpha) 1$.
- For example, α is a root of $X^{4}+X+1$ that defines $\operatorname{GF}\left(2^{4}\right)$, then $X O R(\alpha)=1$. But if we change the irreducible polynomial to $X^{4}+X^{3}+X^{2}+X+1$ then none of the elements of GF $\left(2^{4}\right)$ has XOR count 1 .

XOR count distribution [SS16])

XOR count distribution also varies when a different basis of $\operatorname{GF}\left(2^{n}\right)$ is considered, even if the underlying irreducible polynomial remains fixed.

XOR count distribution [SS16])

XOR count distribution also varies when a different basis of $\mathrm{GF}\left(2^{n}\right)$ is considered, even if the underlying irreducible polynomial remains fixed.

Elements	0	1	α	α^{2}	α^{3}	α^{4}	α^{5}	α^{6}	Sum
Basis $\left\{1, \alpha, \alpha^{2}\right\}$	0	0	1	2	4	4	3	1	15
Basis $\left\{\alpha^{3}, \alpha^{6}, \alpha^{5}\right\}$	0	0	3	3	2	3	2	2	15

XOR count distribution of $\operatorname{GF}\left(2^{3}\right)$ under $X^{3}+X+1$

Circulant Matrix

Definition

A matrix is called circulant if every row is a cyclic shift of other rows.

$$
\mathrm{T}=\left[\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
a_{3} & a_{0} & a_{1} & a_{2} \\
a_{2} & a_{3} & a_{0} & a_{1} \\
a_{1} & a_{2} & a_{3} & a_{0}
\end{array}\right]
$$

Toeplitz Matrices

Definition

A matrix is called Toeplitz if every descending diagonal from left to right is constant.

A typical 4×4 Toeplitz matrix looks like

$$
\mathrm{T}=\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
a_{-1} & a_{0} & a_{1} & a_{2} \\
a_{-2} & a_{-1} & a_{0} & a_{1} \\
a_{-3} & a_{-2} & a_{-1} & a_{0}
\end{array}\right]
$$

Definition

A matrix M is called involutory if $M * M=$ Identity matrix.

Constructing 4×4 Toeplitz MDS Matrices over $\mathbb{F}_{2^{m}}$ [SS16]

Let $\mathrm{T}_{1}(x)$ be the following 4×4 Toeplitz matrix defined over $\mathbb{F}_{2^{m}}$:

$$
\mathrm{T}_{1}(x)=\left[\begin{array}{cccc}
x & 1 & 1 & x^{-2} \\
1 & x & 1 & 1 \\
x^{-2} & 1 & x & 1 \\
x^{-2} & x^{-2} & 1 & x
\end{array}\right]
$$

If $x \in \mathbb{F}_{2^{m}}^{*}$ is such that the degree of its minimal polynomial over \mathbb{F}_{2} is ≥ 5, then $\mathrm{T}_{1}(x)$ is MDS.

The Matrix T_{2}

Let $T_{2}(x)$ be the following 4×4 Toeplitz matrix defined over $\mathbb{F}_{2^{m}}$:

$$
\mathrm{T}_{2}(x)=\left[\begin{array}{cccc}
1 & 1 & x & x^{-1} \tag{1}\\
x^{-2} & 1 & 1 & x \\
1 & x^{-2} & 1 & 1 \\
x^{-1} & 1 & x^{-2} & 1
\end{array}\right]
$$

If $x \in \mathbb{F}_{2^{m}}^{*}$ is such that

- the degree of the minimal polynomial of x is ≥ 4, and
- x is not a root of the polynomial $X^{6}+X^{5}+X^{4}+X+1$, then $\mathrm{T}_{2}(x)$ is MDS.

XOR count of T_{2}

For $G F\left(2^{8}\right)$, the family $T_{2}(x)$ of MDS matrixes contains matrix with XOR count 30 .

For $G F\left(2^{8}\right)$, the family $T_{2}(x)$ of MDS matrixes contains matrix with XOR count 27.
Earlier best known matrix was 32 .

For $G F\left(2^{4}\right)$, the family $T_{2}(x)$ of MDS matrixes contains matrix with XOR count 10.
Earlier best known matrix was 12 .

Search Results

Search result:
For $\operatorname{GF}\left(2^{8}\right)$, the lowest XOR count of a $4 \times 4 \mathrm{MDS}$ matrix is 27 .

For $\operatorname{GF}\left(2^{4}\right)$, the lowest XOR count of a $4 \times 4 \mathrm{MDS}$ matrix is 10 .

Involutory MDS Matrices

Let T be an $n \times n$ Toeplitz matrix defined over $G F\left(2^{m}\right)$. Then T cannot be both MDS and involutory.

Involutory MDS Matrix

Suppose $N_{1}(x)$ is a 4×4 matrix over $\mathbb{F}_{2^{m}}$ such that

$$
N_{1}(x)=\left[\begin{array}{cccc}
1 & x & 1 & x^{2}+1 \tag{2}\\
x & 1 & x^{2}+1 & 1 \\
x^{-2} & 1+x^{-2} & 1 & x \\
1+x^{-2} & x^{-2} & x & 1
\end{array}\right]
$$

Then $N_{1}(x)$ is an involutory matrix for all nonzero $x \in \mathbb{F}_{2^{m}}$, and if the degree of the minimal polynomial of x over \mathbb{F}_{2} is ≥ 4, then $N_{1}(x)$ is also MDS.

Involutory MDS Matrix

Suppose $N_{1}(x)$ is a 4×4 matrix over $\mathbb{F}_{2^{m}}$ such that

$$
N_{1}(x)=\left[\begin{array}{cccc}
1 & x & 1 & x^{2}+1 \tag{2}\\
x & 1 & x^{2}+1 & 1 \\
x^{-2} & 1+x^{-2} & 1 & x \\
1+x^{-2} & x^{-2} & x & 1
\end{array}\right]
$$

Then $N_{1}(x)$ is an involutory matrix for all nonzero $x \in \mathbb{F}_{2^{m}}$, and if the degree of the minimal polynomial of x over \mathbb{F}_{2} is ≥ 4, then $N_{1}(x)$ is also MDS.

- For $G F\left(2^{8}\right)$, the minimum XOR count obtained in N_{1} class is 64 , this is matching with the known lowest bound (obtained through search).

Involutory MDS Matrix

Suppose $N_{2}(x)$ is a 4×4 matrix over $\mathbb{F}_{2^{m}}$ such that

$$
N_{2}(x)=\left[\begin{array}{cccc}
1 & x^{2}+1 & x & 1 \tag{3}\\
x^{2}+1 & 1 & 1 & x \\
x^{3}+x & x^{2}+1 & 1 & x^{2}+1 \\
x^{2}+1 & x^{3}+x & x^{2}+1 & 1
\end{array}\right] .
$$

Then $N_{2}(x)$ is an involutory matrix for all $x \in G F\left(2^{m}\right)$, and if the degree of the minimal polynomial of x over \mathbb{F}_{2} is ≥ 4, then $N_{2}(x)$ is also MDS.

- For $G F\left(2^{4}\right)$, the minimum XOR count obtained for N_{2} is 16 .
- The best known was 24 .

Toeplitz MDS Matrices

- Toeplitz matrices have repeating submatrices [SS17].

$$
\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
a_{-1} & a_{0} & a_{1} & a_{2} \\
a_{-2} & a_{-1} & a_{0} & a_{1} \\
a_{3} & a_{-2} & a_{-1} & a_{0}
\end{array}\right]
$$

The number of distinct $d \times d$ Toeplitz submatrices are

$$
\delta_{d, n}=\left\{\begin{array}{ll}
2 n-1 & \text { if } d=1 \\
\left(n-d+\tau_{d, n}+1\right) \cdot\left\lfloor\frac{n-1}{d-1}\right\rfloor & \text { if } d=2, \ldots, n
\end{array},\right.
$$

where $\tau_{d, n}$ is given by $n-1=\left\lfloor\frac{n-1}{d-1}\right\rfloor(d-1)+\tau_{d, n}$.

Comparison of Number of Submatrices

Dimension	\# submatrix in general	\# of submatrices of \# of Toeplitz matrix	\# of Toeplitz submatrices \# of Toeplitz Matrix
4×4	69	50	20
5×5	251	182	35
6×6	923	672	55
7×7	3431	2508	81
8×8	12869	9438	113

An Open Question

- Prob [an $n \times n$ matrix over \mathbb{F}_{q} is nonsingular] $=\prod_{i=1}^{n}\left(1-\frac{1}{q^{2}}\right)$.
- Prob [an $n \times n$ TOEPLITZ matrix over \mathbb{F}_{q} is nonsingular] $=1-1 / q$.
- What is the probability that a Toeplitz matrix is MDS?

8×8 Toeplitz MDS Matrices with lowest XOR counts [SS17]

- The lowest XOR count $G F\left(2^{8}\right)$ is 232.
- The lowest XOR count for $G F\left(2^{4}\right)$ is 170 .

Recursive MDS Layer

- A serial matrix of order $n \times n$ over $\mathbb{F}_{2^{m}}$ is a matrix of the form

$$
S=\left[\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 1 \\
a_{0} & a_{1} & \ldots & a_{n-1}
\end{array}\right]
$$

- A Recursive MDS matrix is a MDS matrix of the form $M=S^{i}$ for some $i \geq 1$.. Least $S^{n}=$ MDS.
-

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
c_{0} & c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[y, z, c_{0} x+c_{1} y+c_{2} z\right]
$$

- Serial matrix is not MDS
- Repeat until we get MDS.

Serial Matrix iterated further

- LED:

$$
S=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\alpha^{2} & 1 & 1 & \alpha
\end{array}\right]
$$

$$
S^{4}=\operatorname{MDS} . X O R(S)=16
$$

- Last row $(1,1,1,1)$ or $(a, 1,1,1)$ or $(1, a, 1,1)$ or $(1,1,1, a)$ then $S^{i} \neq$ MDS for $i \leq 8$
- But for the last row of $(1,1, a, 1)$, then it is possible to have $S^{8}=\mathrm{MDS}$.
- $S=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & \alpha & 1\end{array}\right]$
- S is the lightest possible serial matrix with $X O R(S)=13$ and S^{8} MDS, α is root of the irreducible polynomial $X^{4}+X+1$

Nonlinear diffusion layer

- Nonlinear function cannot achieve the highest branch number $n+1$.
- Binary function $\mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ differential branch number of $F=\min \{H W(x \oplus y)+H W(F(x) \oplus F(y))\}$
- highest branch number $<n+1$.
- Differential branch number of PRESENT S-box $=3$.
- Highest diff branch number of 4×4 S-boxes $=3$.
- If it 4 then it is affine. [eprint 2017/990]

Bounds : Differential Branch Number of Nonlinear Permutations

- Linear permutations : Griesmer Bound (1960)

$$
N \geq \sum_{i=0}^{K-1}\left\lceil d / 2^{i}\right\rceil
$$

- Our bound : $[2 n / 37$. [eprint 2017/990]

n	Griesmer Bound	Our Bound
4	4	4
5	4	4
6	4	4
7	5	5
8	6	6
9	6	6
10	7	7
11	8	8
12	8	8
13	8	9

THANK YOU

